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9.

10.

The section of a crane hook is trapezoidal, whose inner and outer sides are 90 mm and
25 mm respectively and has a depth of 116 mm. The center of curvature of the section is
at a distance of 65 mm from the inner side of the section and load line passes through the
center of curvature. Find the maximum load the hook can carry, if the maximum stress is
not to exceed 70 MPa. VTU, Dec. 07/Jan. 08

a) Differentiate between a straight beam and a curved beam with stress dism’bution in
each of the beam. R
b) Fig. 1.39 shows a 100 kN crane hook with a trapezoidal section. Determine stress in

the outer, inner, Cg and also at the neutral fibre and draw the stress distribution across
the section AB. : VTU, Jun/July. 08

25
87.5

112.5

F = 100kN

\
Y Fig.1.39
AT, A closed ring is made up of 50 mm diameter steel bar having allowable tensile stress of

200 MPa. The inner diameter of the ring is 100 mm. For load of 30 kN find the maximum
stress in the bar and specify the location. If the ring is cut as shown in part -B of

Fig. 1.40, check whether it is safe to support the applied load.  VTU, Dec. 08/Jan. 09
F F

Fig.1.40



CYLINDERS AND CYLINDER HEADS

2.1 INTRODUCTION

Cylindrical pressure vessels are classified into two groups. (i) Thin cylinders and (ii) Thick
cylinders. A cylinder is considered to be thin when the ratio of its wall thickness to the internal
radius is less than %0. In thin cylinder the stress distribution is assumed to be uniform over the
thickness of wall.

2.2 STRESSES IN A THIN CYLINDER

When a thin cylinder is subjected to internal pressure, its walls are subjected to two types of
tensile stresses.

(i) Circumferential stress or Hoop stress or Tangential stress
(i1} Longitudinal stress

The stress acting along the circumference of the cylinder is called circumferential stress and
the stress acting along the length of the cylinder is called longitudinal stress. Circumferential
stress is also called as hoop stress. The stress set up in two troughs is circumferential stress and the
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Considering the equilibrium of forces in the circumferential direction [Fig. 2.1 (a)].
dpl=20,.h

~ Circumferential or Tangential stress o, = %‘—h—’" e 2.1

Considering the equilibrium of forces in the longitudinal direction [Fig. 2.1 (b)].

m i
P, (Zdlz) = 0,(ndh)
N p.d;
- Longitudinal stress g, = h e 2.2

From equations 2.1 and 2.2, it is seen that the circumferential stress g,, is twice the longitudinal
stress.

p:d,
. Thickness of thin cylinder wall h = 2'0 - where o, is the permissible tensile stress.
0

When there is a joint or seamn in the cylinder, the efficiency of the joint should be taken in to
account.

0= 1 23
o = PGS 24
' 4hm
and h = % ..... 25
3]

where p, = Internal pressure in N/mm?

d. = Internal diameter of cylinder in mm
h = Cylinder wall thickness in mm

n = Efficiency of the joint

o, = Circumferential or Tangential stress
o, = Longitudinal stress.

2.3 STRESS IN A THIN SPHERICAL VESSEL
A spherical pressure vessel with a thin wall is shown in Fig, 2.2



68 Design of Machine Elements - i

Considering equilibrium of forces

n
—dip, = (md,h)6,

4
p;d;

Thickness of shell h = 4_0.: e 2.6
L

Volume of shell v = gdi ..... 2.7

When there is a joint, efficiency of the joint should be taken into account.

Pid;
.. Thickness of shell h = 46,.M . 2.8

2.4 CHANGE IN DIMENSIONS OF A THIN CYLINDER DUE TO AN INTERNAL PRESSURE

.d? v
Increase in diameter §, = —g—‘h—é— (1—5) 29
I in length § -M(l—u) 2.10
ncrease in length §, = SiE (2 w2

. LI N _ .
Increase in volume §, = 7 (d* §, +2d18) 3 where p, = Internal pressure

e 2,11

d, = Internal diameter of cylinder
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h = Thickness of cylinder wall
E = Young's modulus for the material of the cylindrical shell
v = Poisson's ratio
1 = Length of cylinder
8, = Change in diameter

8, = Change in length
, = Change in volume
v = Qriginal volume

2.5 CHANGE IN DIMENSIONS OF A THIN SPHERICAL VESSEL DUE TO AN
INTERNAL PRESSURE

d?
Increase in diameter of a thin spherical vessel 8, = Zlh_}:: {1-v)
. ) . npid?
Increase in volume of a thin spherical vessel §, = ShE {1-v)

w212

w213

Example : 1.1

The storage capacity of a seamless cylinder is 0.0515m* and it is subjected to an internal pressure
of 15 MPa. The cylinder material is alloy steel (¢, = 500 N/fmm?) and a factor of safty 2.5 is used. The
length of the cylinder is twice its internal diameter. Determine the thickness of the cylinder wall.

Data :
p, = 15 MPa =15 N/'mm? v =0.0515m’
0, = 500 N/mm?; FOS =2.5;1=24d,
Solution :
. T o2
Volume of the cylinder v = 7 d; !
ie, 00515 = 7 d? x 24

.. Internal diameter of the cylinder di = 0.320 m = 320 mm
Length of cylinder! = 2 x 320 =640 mm

. Allowable st =2 3% 00 Nmm?
owabpie stress G() = FO = 25 = mm
Thickness of cylinder wall h = St = 15%320 _
WE = = =
ICKNEss O Cy 1nager wa 209 2 < 200 mm

[Neglecting corrosion allowance and joint efficiency]
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Example : 1.2

A hydraulic control for a straight line motion utilizes a spherical pressure tank 'P' which is
connected to a working cylinder 'C' as shown in Fig. 2.3. The tank pressure 2.5 N/mm? is maintained
by a pump. Determine,

(i} Thickness of the pressure tank plates if its internal diameter is 1m and the allowable tensile stress
in the plate material is equal to 62.5 N/mm?. The tank is welded with joints having strength equal
to that of the plate,

(ii) Internal diameter of cast iron cylinder and its thickness to produce an operating force of 20 kN.
Assume a pressure drop of 0.15 N/mm? between the tank and the cylinder and an allowance of
10% of operating force for friction in the cylinder and packing. The allowable stress for the
cylinder material is 23.5 N/mm?,

(iii) Qutput power of the cylinder, if the stroke of the piston is 480 mm and the time required for the
working stroke is 6 seconds.

(iv) Power of the motor, if the working cycle repeats once in every 36 seconds and the ovcrall efficiency
of the hydraulic control is 75% and that of the pump is 65%.

PRESSURE
TANK

Working Cylinder

Solution ;
(i} Thickness of spherical pressure tank
©p, = 25 N/mm?; 0, =62.5 N/mm? ;1= 100% ; d, = 1m = 1000 mm

d.
Thickness of spherical pressure tank h = ;) L (Neglecting Corrosion allowance)
Oght
_25x1000 = 10 mm
T 4x62.5x1

(ii) Internal diameter of cast iron cylinder and its thickness
Operating force F = 20kN = 20,000 N

10
Total force to be produced by the piston = Operating force + 10% F = 20,000 + 100 x 20000 = 22000N

Pressure in the cylinder p; = 2.5- 0.15 = 2,35 N/mm?
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n
Total force produced by the piston = e diz. x Pi.

. r 2
ie,, 22000 = i di %235
- Internal diameter of cylinder d; =109.2 mm = 110 mm

Pi, Xdi,  235%110

Thickness of cylinder wall h, = 26, = awmis = 5.5 mm (Neglecting corrosion allowance)

(iii) Output power of cylinder
Net operating force produced by the piston = 20 kN
Stroke of piston = 480 mm=0.48 m

Time required for one working stroke = 6 seconds

0.48
.~ Distance moved by the piston per sccond = % - 0.08 m

Work done per second = Force x Distance travelled per second = 20 x 0.08 = 1.6 kNm
- Out put power of the cylinder = 1.6 kW
(iv) Power of the motor

The motor is to provide a force of 22 kN 1o the cylinder

0.48 I I 6
x — = 0.6017 kW

-~ P =
ower of motor = 22 x 6 075 X065 > 36

Example : 2.3

A cylindrical vessel whose ends are closed by means of hemispherical covers is subjected to an
internal pressure of 6 N/mm?, The length of the cylindrical portion is twice that of its internal diameter.
The allowable tensile stress of the material of the vessel is 82.5 N/mm? and its storage capacity is
0.345 m*. Neglecting the effect of welded joints and the allowance for corrosion, determine its dimensions.

Data :

! =2d; 6,=825Nmm* v=0345.m’; p =6 N'mm?
Solution ;

Volume of the vessel

Yolume of the cylindrical portion + Volume of the spherical portion

a2 1+ T 47= 7 47 2d)+ = pd?
i 6 4 i i G i

k!

2
df =3 nd;

i

I
[N
[
=,
+
o
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3 f3 x(.345
- Internal diameterd, = 3 ﬁ =3 > =0.5482 m

Take, Internal diameter d = 0.55m=550 mm

-~ Length of cylinder! = 2d =2 x 550 = 1100 mm

d, 6x550

Thickness of cylinder wall h = Dici = 22220 _ 9 o
20,  2x825
d. 6x550

Thickness of sphericalend h = ZIE: = 6x825 10 mm

. Permissible thickness of the vessel h = 20 mm

2.6 THICK CYLINDERS

If the ratio of thickness to internal radius of cylinder is more than %0, then the cylinder is

known as thick cylinder. In thick cylinder hoop stress distribution over the thickness of wall is not
uniform. It is maximum at the inner circumference and minimum at the outer circumference.
Thick cylinders are used to withstand high pressures.

2.7 LAME'S THEORY

The analysis of thick cylinder is complex and hence it is solved by using the following
assumptions.

(i) The material of the cylinder is homogeneous and isotropic.

(ii) Plane sections of the cylinder, perpendicular to the longitudinal axis, remain plane under
the pressure i.e., longitudinal strain is constant and is independent of radius.

The theory derived after making the above mentioned assumptions is popularly known as
Lame's theory.

2.8 STRESSES IN A THICK CYLINDER
Consider a thick cylinder subjected to an internal pressure as shown in Fig. 2.4
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Quter radius of cylinder
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Consider an elemental ring of thickness 8r and radius r of the cylinder as shown in Fig. 2.4
(b) and Fig. 2.4 (c).

Inner radius of the cylinder

Length of cylinder

Let o, = Radial stress on the inner surface of the ring

o,+ 8o, = Radial stress on the outer surface of the ring.

, = Tangential stress induced on the ring
Bursting force on the longitudinal section x — x
= g, (2r)) - (0,+36)2 (r+ or)y 1
= 20, 1l - 26,11 - 26,8rl - 218G .1 - 260, Br.l
Neglect 80 . 8 as the quantity is very small
-~ Bursting force on the longitudinal section X - X =20 Sri - 21'150't )

Resisting force = Hoop stress x Area on which itacts =G, . 2011 o (10)
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For equilibrium

Bursting force = Resisting force
ie., -2 00l -2t/ 8, = ©,2681

ie.,— ¢ or—rdc, = oﬁﬁr

oo,
-0 -r~-— N (11)]

[¢] r Sr

From Lame's theory the longitudinal strain at any point in the section is constant and is
independent of the radius. Since the longitudinal strain is constant, the longitudinal stress o, will
also be constant, Hence at any point at a distance r from the centre, the three principal stresses
acting are,

)

(i) Radial Compressive stress 'c '
(i) Hoop or Tangential tensile stress 'c,’
(iti) Longitudinal tensile stress 'c,

L ) L G, O G
- Longitudinal strain at this point €, = L -0

E mE mE
. . o, Oy O,
As longitudinal strain is constant, bt . R = constant
E mE mE
But o, E and m are also constant
-6, -0, = Constant
Take o,- 0 = 2a
SO, = 0, +2a e (i)
Equating the equations (iii) and (iv)
éo,
-0 —-r =0 +2a
r 8.- ¥
. rdo,
e, 7 = -2(0. +2)
&r T
oo &r
ie., — = 2 — e (V)
(o, +a) r
Integrating the equation {v)
log, (6,+a) = ~2log r+logb. where log, b is the integration constant

b
= —log r* +log b =log, (:5‘)

ie.,0 +a = b’
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. Ll :
SO = 2 —-a wee (V)

Substituting the value of 6 in equations (iv)

b
o, = ;“2-“ -a+2a
b -
SO = a+t r—g weee (Vi)
As radial stress is compressive stress, it is convenient to write the equation {(vi) as
b
o = a- 2 e {W1T)

Equation (viii) gives the radial stress at any radius r and equation (vii} gives the hoop stress (tangential
stress) at any radius r. These two equations are called Lame's equations. The values of a and b are obrained
from boundary conditions and are known as Lame's constant.

From Design Data Hand Book (Vol.I)

Hoop stress or Tangential stress in the cylinder wall at radius r,

2 2 2.2
pidi _pndo di do(pi "po) b
o = + a4+ — ... .17 (DDHB
" d? - d? 4r*(d? -d?) B ( )
H di
0, = 53— | l+—5 | whenp =0 ... .19 (DDHB)
. . . pi(d +d3)
Maximum tangential stress at the inner surface Oy, = W .. 1.21 (DDHB)
o 4
. 2 —_ 2 dlzdi i -
Radial stress at radius 1,0, = 2% “Poda _ ——2—(2——]:’;’—) P ... 7.18 (DDHB)
. d? -d? ar*(dl - d?) r
L % | when p = 7.20 (DDHB
G = -4 l—4r2 whenp =o e 1.20¢ )
Maximum radial stress @, = —p, o 1.22 (DDHB)
Pidﬁ

Maximum shear stress at the inner surface of the cylinder under internal pressure T, = P —d?
0 i

.. 7.23 (DDHB)
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. . . . . d;| |og *pi
Wall thickness of the cylinder for brittle material h = > :5—_—p— -1 .... 1.24 (DDHB)
o~ P
. . . . d; Og
Wall thickness of the cylinder for ductile material h = —2' E’—Zp -1 . .25 {DDHB)
8 <P

2.9 WALL THICKNESS OF CYLINDER

When the material of the cylinder is brittle, such as cast iron, cast steel etc, Lame’s equation
is used to determine the wall thickness. It is based on the maximum principal stress theory of
failure. ie., Maximum principal stress is equated to the permissible stress of the material.

We know 6, = —p, .... 7.22 (DDHB)
(d% +d?)
()'0 =p, (d_z-d—z) e 121 (DDHB)
Pidi2
17 (do? ~di?)
5 0,>0,>0,
Hence g, is the criterion of design
Oy _ do’+di’
o T ot -di?
Substituting the values of principal stresses and by simplification
we et dy, _ [Ge*P;
d; | [OetPi
-~ Thickness of cylinder wall h = ?‘ [ ﬁ = 1} (. d =d +2h) .... 1.24 (DDHB)

When the material of the cylinder is ductile, such as mild steel or alloy steel, maximum
principal strain theory or St. Venant's theory of failure is used as a criterion to indicate failure.
According to this theory, failure will occur whenever a principal strain reaches a limiting value as
determined from the standard tension test. The three principal stresses at the inner surface of the
cylinder are as follows.



Cylinders and Cylinder Heads 77

d? +4d?
S, = P, [ﬁ} where do =d. + 2h
o 1

_ _D d?
T

According to this theory for tri axial stress state the design equation is,

o o v

bl £}

—_— == (0, +0 SO >0>0
]"IE E E(r 1)( (1] { r)

where n = FOS ; E = Young's modulus of the material ; u = Poisson's ratio

G“l

' ' ) . . . 0
ie., 0y =0,-v (0, +0) where g, = Permissible stress in tension = — or —-
n n

Substituting the values of principal stresses and by simplification we get,

_ di} Joo +(1-20)p; _
h = 2{m '} ... 7.28 (DDHB)

Equation 7.28 (DDHB} is Clavarino's equation and it is applicable to cylinders with closed ends and
made of ductile material.

When the cylinder ends are open, 6,=0

. ! ' s : : G)’t G“t
. 0y =0,—v 0 where g, = Permissible stress in tension = — or —-
n 0

Substituting the values of principal stresses and by simplification we get,

d; ‘0'9' +{1-v)p;
=—] | —————— -1 R
h 5 I: oy —(1+0)p, :| 7.31 (DDHB)

Equation 7.31 (DDHB) is Bimie's equation and it is applicable to cylinders with open ends and made
of ductile material.

According to Lame's theory for ductile material, maximum shear stress theory is used.
According to this theory, the maximum shear stress at any point in a strained body is equal to one half

the algebraic difference of the maximum and minimum principal stresses at that point.

: - , dg +df
Maximum principal stress at the inner surface 6, =g, = Pi dg "diz (~o0,>0,>0)

Minimum principal stress at the inner surface 6, =6 =-p (.. 0, <06,<0,)



78 Design of Machine Elements - (i

U'_Uq

2

Substituting the values of principal stresses and by simplification, we get

h = $.|: "EL_[:I
2 Tnax ~ Pi

d; % oy
T Wooze MG Tm=0) ... 1.25 (DDHB)

.. Maximum shear stress T . =

T
-
[}

Oy —2p; 2

-,

Y
"'é:ample 2.4

A cast iron cylinder of internal diameter 500 mm and 75 mm thick is filled with a fluid of pressure
6 N/mm’. Determine the tangential and radial stresses at the inner, middle and outer surface. Also
sketch the tangential stress and radial stress distribution across its thickness.

Data :

d = 500mm; d =500+2x75 = 650 mm;p =6Nmm’p =o
Solution ;

Tangential stress in the cylinder wall at radius r

2 d?
= B T S0 henp = 7.19 (DDHB
o, = FLRRY. 42 | whenp =0 e 119 ( )
Q 1
Whenr = ri=§-g—O =250 mm
6 x 5007 2
Co, = T +-—f-)-5-(-)——-i~ = 23.39 N/mm?
't (6507 -5007) | 4x250
250+325
Whenr = r_= — =287.5 mm
6x 500 2
O, = 7.3 ooy +—6—52——,,— =19.81 N/mm’
" (6507 -500%) | 4x2875°

When r=r =325 mm

Oy

o

6% 5002 [1+ 650°

2—;" —TJ = l7.39 N/mmz
(650 - 500-) 4x325

Radial stress in the cylinder wall at radius r
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d.’ dj
=BG 1—%] when p =0 7.20 (DDHB)
; df,—df [ arl p e £.20(
When r=r1,.=250 mm
G, =0, = —p,=—6Nmm’ ... .22 (DDHB)
Whenr = r =287.5 mm
6x 500° 2
g, = ——5 T ——-6L1 =-2.42 N/mm?
" (6507 -5007) | 4x287.5°
Whenr = r =325 mm
G, =0

Tangential stress and radial stress distribution across the section is as shown in Fig. 2.5.

a} Tangential stress distribution

Parabolic
9.81N/mm’

17.39 N/mm’

oy /

b) Radial stress distribution

Fig. 2.5
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\/E'J':dmple ;2.5

A hydraulic press has a maximum capacity of 10 kN. The friction due to piston packings is
equivalent to 10% of its capacity. The cylinder is made of cast iron whose ultimate tensile strength is
240 MPa, Diameter of the piston is 50 mtn and factor of safety is 4. Determine the wall thickness of the
cylinder.

Data :
Gy, = 240 MPa; D, =50 mm; FOS=4

Solution :

L}

10
Total force on the piston F = 10+ '1*66><1Q =11 kN=11000N

Also, F

i

Hla &3

D?"Pi

ie., 11000 = — x 50°x p,

. Pressure inside the cylinder p, = 5.6 N/mm?

o 240
Permissible tensile stress g, = : = —4— = 60 N/mm?

By Lame's equation for brittle materials,

. . di | {SotPi | _50 ’6_0_i6 -1
Wall thickness ofcy]:nderh=? Gy~ P, =75 |Ve0-56 =5.147 mm.... 17.4 (DDHB)

takeh = 6 mm

)/E?&mple 2.0

Determine the thickness of metal necessary for a cylinder of internal diameter 160 min to withstand
an internal fluid pressure of 8 N/mm?®. The maximum tangential stress in the section is not to exceed 35
N/mm? The material may be assumed as a brittle material.

Data :

d, = 160 mm; p,=8 N/mm* ¢, =35 N/inm?
Solution :

By Lame's equation for brittle materials,

Wall thickness of cylinder b = SL | -3k -1 17.24 (DDHB)
all thickness o cylmder = 2 Uu—pi vars .
160 35+8
— e ‘_“—_l - =
== { 35-8 }—20.958 mm = 21 mm
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. Example : 2.7

The inside diameter of a cylindrical tank is 200 mm. The gas pressure inside the cylinder is
10 MPa. The tank is made of carbon steei whose ultimate tensile strength is 400 N/mm? and the factor
of safety is 5. Find the wall thickness of the cylinder. Poisson's ratio of the material is 0.3.

Data ;

d, = 200 mm; p,= 10 Mpa; o, =400 N/mm?* Fos=5;0=10.3
Solution :

The cylinder is a closed cylinder since it stores gas under pressure. .

Permissible st e o= 20 g N
ermissible stress oy = 0,= £ o =" = mm
By Lame's equation for ductile materiats,
Wall thick f cylinder h 4 %oy 7.25 (DDHB)
a ICKNEss Of cylmnaer = 2 Go“zpi e
200 80
= == : -1 = =
=7 |: (80-2x10) jl—15.47mm= 16 mm

By Clavarino's equation for ductile materials,

d, ’0'0 +(1-2v)p; l BET B
Wall thickness of closed cylinder h = ? Ule —(1+v)p, | ... .28 (DDHB)

200 | [80+ (1= 2%0.3)10 |
= —2~ 80~ (1+03)10 =11.97 mm = 12 mm

. Example : 2.8

A seamless steel pipe of 150 mm internal diameter is subjected to internal pressure of 10 MPa.

The pipe is made of steel whose tensile strength at the yield point is 240 N/mm?” and the factor of safety
is 3. Poisson's ratio of the material is 0.27 Determine the wall thickness of the pipe.

Data :

d, = 150 mm; p =106MPa; o, = 240 N/'mm?*; FOS = 3; 0 =0.27
Solution :

It is an open cylinder as it is a pipe.

By Lame’s equation for ductile materials,
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d. (o]
Wall thickness of cylinderh = ?'|:"0_ —G2p -1] ----- 7.25 (DDHB)
] i

1@[ 80

— 1] = =
2 [V80-2x%10 ]-11.6mm_12 mm

By Birnie's equation for ductile materials,

d,| {og+{1-0)p. B
Wall thickness of an open cylinderh = — —M -1 «—--7.31 (DDHB)
2 Vou~-(1+v)p,

150] [80+(1-027)10 _["
= 2 ¥s0-(1+02710 = 1042 mm= {Imm.

- 'E;&mple 2.9

A castiron cylindrical pipe of outside diameter 300 mm and inside diameter 200 mm is subjected

* to an internal fluid pressure of 20 N/mm? and external fuid pressure of 5 N/mm?®. Determine the

tangential and radial stresses at the inner, middle and outer surface. Also sketch the tangential stress
and radial stress distribution across its thickness

Data :
d, =300 mm; d =200 mm; p, =20 N/mm?* p =5N/mm’
Solution :

Lame's general expression for tangential stress in the cylinder wall at radius r,

P:d|2 _pod(z) + dlzdtzj(pl —p())

= o = > 7.17 (DDHB
% = T gila 4r*(d3-d}) ( ‘
200
When r = r'=T= 100 mm
2 2-5%x300° 200% x300%(20-5
Gy, = Oxzog_ sz + 3 2( Z =34 N/mm?
3002 - 200 4x100%(3007 - 200 )
100+ 150
When r = rm=——2— = 125 mm
s 20x 200 -5x300° 2007 x300°(20-5) 2428 N
o = 3007 - 2007 4x125%(300% —200%) ~ 72T
300
When r = r‘_=—-§-=150mm
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20%200° -5x300° 2007 x300%(20-5)

%% =TT 2007 T ax 150%(300% - 200?) = 19 Rjmen?
Lame's general expression for radial stress in the cylinder wall at radius r,
pid} ~p,d2 didi(pi —po)
o = dﬁ—df 4r2(d§—di2) ----- 7.18 (DDHB)
When r=r, =100 mm
O, = O  =-p =-20 N/mm’
When r=r =150 mm
G, = O, =-p =-5N/mm’
Whenr=r_=125 mm
2 2 2 2
o, = 2 X:O%OZ - 250?)300 B 4??é5§€:§02(i02;2) = 1028 Nmnr

Tangential stress and radial stress distribution across the section is as shown in Fig 2.6

Parabolic

a) Tangential stress distribution b} Radial stress distribution
Fig 2.6
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2.10 COMPOUND CYLINDER
According to Lame's equation, the thickness of a cylindrical shell is given by

Ei_i“ 00 + pi -1
h = 2 Voo -p, ) 7.24 (DDHB)

If the internal pressure p, is equal or greater than the allowable tensile stress 6, then the root
value is imaginary. Therefore it is not possible to design a cylinder if the internal pressure is
greater than the allowable stress. This ill effect will be overcome by prestressing the cylinder
before using it in service. This may be done by the following methods.

(i) By using compound cylinder

In a compound cylinder, the outer cylinder is shrunk fit over the inner cylinder by heating and
cooling. On cooling a contact pressure is developed at the junction of the two cylinders which
induces compressive tangential stress in the inner cylinder and tensile tangential stress in the outer
cylinder. When the cylinder is loaded, the compressive stresses are first relieved and than tensile
stresses are induced. Thus a compound cylinder is more effective in resisting higher internal pressure
than a single cylinder with the same overall dimensions.

(i) By overloading the cylinder before it is put into service i.e., By using the theory of plasticity

In this method, a temporary high internal pressure is applied till the plastic stage is reached
near the inside of the cylinder wall while the outer portion is still in the elastic range. When the
pressure is released, the outer portion contracts exerting pressure on the inner portion which has
undergone permanent deformation. This induces residual compressive stresses at the inner surface
and tensile stresses at the outer surface.

e
(1)) {A_wire under tension is closely wound around the cylinder, which results in residual

compressive stress. -

This process of pre-stressing the cylinder before using it in service is called "autofrettage”.
Autofrettage not only increases the pressure capacity of the cylinder but also improves the endurance
strength,

2.11 STRESSES IN COMPOUND CYLINDER

Fig 2.7 (a) shows a compound cylinder assembled with a shrink fit.
p(}

compressive

P.
{a) Compound cylinder (b} Inner cylinder {c) Outer cylinder

Fig 2.7
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Letd, = Inside diameter of inner cylinder
d_ = Outside diameter of outer cylinder
d, = Common diameter after shrink fit
d = Outside diameter of inner cylinder = Diameter of shaft
d, = Inner diameter of outer cylinder = Diameter of hub
p. = Contact pressure
o, = Tangential stress
o, = Radial stress
Ad, = Change in diameter of inner member
Ad_ = Change in diameter of outer member
8 = Total interference
i = Coefficient of friction
v = Poisson's Ratio = 0.3 for steel

When the outer cylinder is shrunk fit over the inner cylinder, a contact pressure p, is developed
at the junction of the two cylinders, (i.e., at radius r,) The stresses due to this pressure may be
determined by using Lame's equation.

(1) The general expression for tangential stress at radius r,

_ pdi-pdl | didi(pi~po)

= 3 -~ 7.17 (DDHB
%= T@odr a(d-d) (DDRE)
Considering external pressure 6nly
2 2
p.d d; .
G = — 7(1 nq 1+_|_ _____ 1
0 d: -d; ( 4r2] @
Considering the internal pressure only
pidi2 d: "
o, = dﬁ-——d;"’ (l'l’z;i' ----- (ii)
(i) Tangential stress at the outside diameter of outer cylinder Og_,
- . - . dﬂ
From equation (ii) substituting p, =p_, r= > andd =d_
2 2
p.d? d? 2p.d;
Go.,, = dﬁ—_di [HE:':] ol 11.12(DDHB)

1t is tensile stress and is shown by the line ab in Fig 2.7 (¢)
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(i) Tangential stress at the inside diameter of outer cylinder 0, __

d,
From equation (ii) substituting p. =p_, r = ?‘ andd, =d

p.dz, dz, 42 + a2
= L)1+ = -2 ¢ : _____ ]
Cs_, P —d:',[ di Pc a2 11.13 (DDHB)

o C
it is tensile stress and is shown by the line cd in Fig 2.7 (¢)
(iii) Tangential stress at the outside diameter of inner cylinder og__

d
From equation (i) substitutingp =p,d =d_andr= 7’“

—p.d? d? d? +d?
g = ——|l+%|=-p = il.14 (DDHB
0 d?. —-4? [ dEJ p"[df ._d'2 ( )

[ i

It is compressive stress and is shown by the line ef in Fig 2.7 (b)

(iv) Tangential stress at the inner diameter of inner cylinder Oy,

d.
From equation (i), substitutingp =p,d =d andr= "5'—
d: d; 2p.d?
o, = “E%_:jz {“'d_]zj = —"&sgf-a‘? ————— 11.15 (DDHB)

It is compressive stress and is shown by the line gh in Fig 2.7 (b)
(2) The General expression for radial stress at radius r,

5 _ Pdiopdi didi(pi—p.)
T dg-d? 4ri(dl-a?)

Considering external pressure only,

d? d?
= g

Considering internal pressure only

d2 d2 .
e (or I o

o] 1
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(i) Radial stress at the outside diameter of outer cylinder o,

d
From equation (iv), substituting p,=p_, r= ?" andd =d,

ped; (,_dj
G'l.,.. = dz_d2 [l“d—z =0

(ii) Radial stress at the inside diameter of cuter cylinder o, .

d,
From equation (iv) substituting p = p, r = -2L andd, =d

pd: (, di
o) = T3 l——7 =—
- [ d; ] &

[

(iii) Radial stress at the outside diameter of inner cylinder o,

d
From equation (iii), substitutingp, =p,d, =d andr = ?c

_Pcdi 1— ﬁ
R T L A
(iv) Radial stress at the inside diameter of inner cylinder G, _
From equation (iii), substitutingp =p_,d =d andr=

__pde [, df
LT a-d )0

Radial stress distribution due to shrinkage fitting is shown in Fig 2.8

2

11.16 (DDHB)

11.17 (DDHB)

11.18 (DDHB)

11.19 (DDHB)
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Fig 2.8 [Fig 11.2(b) DDHB]
(3) Change in dimensions

. o N p.d, | di +d]
(i) Change in diameter of inner member Ad, = ——‘E— W —UV| e 11.2 (DDHB)
p.d. | dg +dg
(if) Change in diameter of outer member Ad = FlEoa L [ — 11.3 (DDHB)

(iii) Total interference 6 = Ad_+ Ad,
(iv) Diameter of shaftd =d_+ Ad,
(v} Diameter of hubd, =d_~ Ad o
(4) Axial force necessary to press the shaft into the hub F =n d;] upc --:- 11.22 (DDHB)
dZlup, d,
(5) Torque capacity of shrink fit M, = E—%‘ﬂi R 11.26 (DDHB)
(6) If the compound cylinder is subjected to an internal fluid pressure p, and external pressure

p, = 0, then the general expression for tangential stress according to Lame's equation is,

pdi (4 7.19 (DDHB
o, = di—diz sz () [7.19( )]

(i) Tangential stress due to internal fluid pressure p, at the outer surface of outer cylinder o’{,“

d

From equation (v), substituting r = -5"—

’ l:‘idi2 di 2Pid?
O'nm = d2 ....dz [1-}-—) I S




Cylinders and Cylinder Heads 8%

It is tensile stress and is shown by the line ab in Fig 2.9 (a)
(ii) Tangential stress due to internal fluid pressure p, at the outer surface of inner cylinder or

inner surface of outer cylinder 6, or o,
ol W

From equation (vi, substituting r = d /2

.. pd? d,\ pd; (d+d;
O =0y =—sit—| 1+ | - £0L | Ze T2
0, =0, dg_dg[ de‘ d; \dg-d;

1t is tensile stress and is shown by the line cd’ in Fig. 2.9 (a)

(iii) Tangential stress due to internal fluid pressure p, at the inner surface of inner cylinder Gé”

d.
From equation (v), substituting r = -"2—"

' _ pldl2 1+£ d§+d?
% T @ogf| Tar) TPilal-df

It is tensile stress and is shown by the line gg' in Fig 2.9 (a)

. P

o,

a) Tangential stress distribution due to

a) Resultant tangential stress distribution due
Shrinkage fitting and internal fluid pressure

to Shrinkage fitting and internal fluid
pressure

Fig2.9
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Resultant tangential stress at the outer surface of outer cylinder = 0y + 0"9‘_. =ab + ab,
It is tensile stress and is shown by the line ab" in Fig 2.9 (b)

Resultant tangential stress at the inner surface of outer cylinder = Gy, + G@ﬁ =cd+cd

It is tensile stress and is shown by the line c¢d” in Fig 2.9 (b).

Resultant tangential stress at the outer surface of inner cylinder = o, + 0'0'“ =ed —ef

It is tensile stress and is shown by the line cc" in Fig 2.9 (b)

Resultant tangential stress at the inner surface of inner cylinder = Gq_, + 0'0ii =gg' - gh

It is tensile stress and is shown by the line gg" in Fig 2.9 (b)

(7) If the compound cylinder is subjected to an internal fluid pressure p, and external pressure
p, =0, then the general expression for radial stress according to Lame's equation is,

pd; di .
o =a gt (vi) [7.20 (DDHB)]

() Radial stress due to internal fluid pressure p, at the outersurface of outer cylinder 0",““
From equation (vi), substituting r = —

. p.d> d2)
- 71 i 1—-—&
% d;-d?[ a)=0

(ii) Radial stress due to internal fluid pressure p, at the inner surface of outer cylinder or

outer surface of inner cylinder 0' or c

d,
From equation (vi), substituting r = ?

. . pdi (A3} pdifdi-dl
O, =06, =3 a|l-—F|=""5"|7F—
o W od) ~d? d; d: \d, -d;

It is compressive stress

(iii) Radial stress due to internal fluid pressure p, at the innersurface of inner cylinder U',ii

d.
From equation (vi), substituting r = —2-'*
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It is compressive stress.

Resultant radial stress at the inner surface of inner cylinder= 6, +0 ,

It is compressive stress

Resultant radial stress at the outer surface of the outer cylinder = G, _ + 0',.__
Resultant radial stress at the inner surface of the outer cylinder or Resultant radial stress at
the outer surface of inner cylinder = G, + 0}“i .

It is compressive stress,

Resultant radial stress distribution due to shrinkage fitting and internal fluid pressure is shown
in Fig 2.10.

Fig 2.10

\. ‘Example : 2.10

A carbon steel C50 barrel with diameter 25 mm and 50 mm is to be shrink fitted into another
barrel with diameter 50 mm and 75 mm. The tangential stress developed at the inner fibre of the outer
barrel due to shrink fitting may be limited to 70 N/mm?, Determine,

(i) Contact pressure
(if) Original diameter at contact before shrink fitting
(iii) Resulting stress distribution due to shrink fitting. E = 21 x 10* N/mm*; v = 0.28
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Data :
d=25mm; d =50mm; d =75mm; v =028;
E =21 x 10/ N'mm?; g, = 70 N/mm?.

Solution : :
(i) Contact pressure

Tangential stress at the inside diameter of outer cylinder

5 = d? +d?
S (T

p(75° +50°)
(757 - 50°)

ie, 70 =

- Contact pressure p. = 26.92 N/mm?
(if) Original diameter at contact before shrink fitting

-p.d
Change in diameter of inner member Ad, = P [

dé +d?
C+d| v
E

de+di _
g —d?

~26.92x50 | 502 +25°
21x10* | 50% - 257

————— 11.13 (DDHB)

"0.23} =-8.888 x 10~ mm = - 0.009 mm

- Original outside diameter of inner member d = d_+ Ad, = 50 + 0.009 = 50.009 mm

d. | d?+d?
Change in diameter of outer member Ad = Pl -5 +V
¢ E d; - dc

26.92 x50 | 757 + 507

= ——— |t ——=+028| =
- 2ix10t |:752_502 jl-—0.0[Smm

... 11.3(DDHB}

- Original inner diameter of outer memberd =d_-Ad_ =50 -0.018 = 49.982 mm

(iii} (a) Tangent stresses due to shrink fit

2p.d>

Tangential stress at outside diameter of outer member o, = dzp_c_ dcz
4] <
2x26.92% 50° ,

= W = 43.072 N/mm

Tangential stress at inside diameter of outer member ¢, . =70 N/mm? (Given)

d2 +d?

. N . Pcllc * 4

Tangential stress at outside diameter of inner member o, = ——(m
¢ TS

... 11.12 (DDHB)

... 11.14 (DDHB)
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-26.92(50° +257)
= 3 3 = — 44.8 N/mm?
(50? -25%)
2p.d?
Tangential stress at inside diameter of inner member g, = —W ... 11.15 (DDHB)
¢ T Y
2%26.92 % 50°
-~ ———— =_71.78 N/mm?
(50° x25%)
(b) Radial stresses due to shrink fit
Redial stress at outside diameter of outer membero,_ =0 ... 11.16 (DDHB)
Radial stress at inside diameter of outer member ¢ __ = —p_=-26.92 N/mm* ... 11.17 {DDHB)
Radial stress at outside diameter of inner memberc_ =-p_=-26.92 N/mm? ... 11.18 (DDHB)
Radial stress at inside diameter of inner member o, = 0 ... 11.19 (DDHB)

Tangential stress distribution and radial stress distribution due to shrinkage fitting are shown in
Fig. 2.11 (a) and 2.11 (b} respectively.

(a} Tangential stress distribution {b) Radial stress distribution

due to shrink fitting due to shrink fitting

Fig. 2.11
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‘._/,E”.&i;tple :2.11

A solid shaft of 125 mm diameter is to be pressed into a steel flange which has an outside diameter
of 150 mm and length of 100 mm. E = 21 x 10* N/mm?, v = 0.3. Determine,

(i) Proper size of bore so that the maximum stress in the bore does not exceed 160N/mm?
(ii) Pressure between hub and shaft.

(iii) Force required to press the parts together.

(iv) Torque capacity of the press fit.
Data :

d_=125mm; d =150 mm; d,=0( Solid shaft) 30, = 160 N/'mm?; E = 21 x 10* N/mm?; v=0.3
Solution ;

(i) Pressure between hub and shaft

d? +d?
Tangential stress at the inside diameter of outer member o, , = pc(dg—d%] ... 11.13(DDHB)
o Y

ie., 160 = p, [m

- Pressure between hub and shaft p_= 28.85 N/mm?
(ii) Size of bore ‘

1502+1252J

o pod, (do+dc’
Change in diameter of outer member Ad_= E dZ-a? tv
i) <

... 11.3 (DDHB)

28.85% 125 { 150% +125° +03
= 2ix10° 15071257 ) =01 mm
- Proper size of bore d, =d_— Ad = 125-0.1 = 124.9 mm

(iii) Force required to press the parts together

Axial force necessary to press shaft into hub F =nd lup, .. 11.22 (DDHB)
A x 125 x 100 x 0.1 x28.85 = 113293.7N = 1133 kN

(- For press fit g = (.1)

(iv) Torgue Capacity

nd?’l
Torque of press fit M, = —5-2“&

d, 125
= Fa.-'a"- =113.3 x El 7081.25 kNmm ... 11.26 (DDHB)

= 7.08125kNm = 7.1 kNm.
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" " Example : 2.12

Design a shrink fit joint to join two cylinders of diameter 150 mm x 200 mm and 200 mm x 250

mm. Maximum tangential stress in the components due to shrink fitting is to be limited to 40 Mpa.
Also determine the axial force necessary to dis-engage the joint if the length of the joint is 200 mm and
the maximum power that can be transmitted at a rated speed of 1000 rpm, The material of the cylinder

has a modulus of elasticity 210 GPa and Poisson's ratio 0.3 [Bangalore University, Feb'96, Aug'92]

d, =150 mm; d =200 mm; d =250 mm;o, =40 MPa=40 N/mm’ ;! =200 mm ; n = 1000 rpm;

E =210 GPa =210 x 10° N/mm*; v = 0.3
Solution :

(i) Contact Pressure

Tangential stress at the inside diameter of outer cylinder

Qi ]

=]

[

Rz
N
Q.| &

|z
1|+
[=N =T

rafr ta
S—

2507 +200°
P { 250% - 2007

. Pressure at the contact point or junction p_= 8.78 N/mm’

iea, 40

(ii) Tangential stress due to shrink fit

2p.d?
Tangential stress at the outside diameter of outer cylinder o = dzp:dz
(A} c
_ 2xBT8x200° 3122 Nimme
2507 -200%0 7

Tangential stress at the inside diameter of outer cylinder 6, = 40 Nfmm’® (given)

d +d;
Tangential stress at the outside diameter of inner cylinder o, =-P. (h‘%
c i

200° +150°2 )
= -8.78 | 5507 1507 | = ~31-36 N/mm

2p.d?
Tangential stress at the inside diameter of inner cylinder o, =~ 12 i dL;
c 1

o 2XBTBX200° 46137 Nimm?

(2007 - 150%)

. 113 (DDHB)

.. 11.12 (DDHB)

.. 11.14 (DDHB)

.. 11.15 (DDHB)
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Tangential stress distribution due to shrinkage fitting is shown in Fig. 2.12 (a)
(iii) Radial stress due to shrink fit

Radial stress at the outside diameter of outer cylinderg,_ =0

Radial stress at the inside diameter of outer cylinder ¢ = -p =~ 8.78 N/mm?
Radial stress at the outside diameter of inner cylinder ¢, = —p, = -8.78 N/mm?
Radial stress at the inside diameter of inner cylinder ¢_ =0

Radial stress distribution due to shrinkage fitting is shown in Fig. 2.12 (b)

.. 11.16 (DDHB)
.. 11.17 (DDHB)
.. 11.18 (DDHB)
.. 11.19 (DDHB)

{a) Tangential stress distribution (b) Radial stress distribution
due to shrink fitting due to shrink fitting

Fig. 2.12

(iv) Change in dimensions

4.
Change in diameter of inner member Adi = ~BeSe |i

d? +d?
E

-0
a? - g?

__8.78x200 | 200° +150°
210x10% | 2007 - 150

... 11.2(DDHB)

—0.3] =-0.027mm = -0.03 mm
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2,42
d L +d
Change in diameter of outer member Ad_= pCE £ I:dz —d; “H’} ... 11.3 (DDHB)
8.78x200 | 250° +200° .
= 210x107 | 2507 —2007 | T 0-04mm
- Total interference 6 = Ad_+ Ad, =0.03 +0.04 = 0.07 mm ... 11.4 (DDHB)

Original inner diameter of outer memberd =d —Ad =200 -0.04 = 199.96 mm
Original outer diameter of inner member d_=d_+ Ad, =200 + 0.03 = 200.03 mm

(v) Force necessary to dis-engage the joint

Axial force necessary to dis-engage the joint F = nd Jup, ... 11.22 (DDHB)
= 7tx 200 x 200 x 0.125 x 8.78 [For shrink fit pu = 0.125]
= 1379159 N
(vi) Torque Capacity
d21 d
Torque of shrink fitM, = — Lzu Pe _ Ry .. 11.25 (DDHB)

200
= 1379159 % = 13791590 Nmm = 13.8 KNm

(vii} Power transmitted

Torque of the shrink fit M,

N
9550 x 1000 x o where M, in Nmm

N
9550 x 1000 x ——

ie., 13791590
ie., 1379159 1000

I

1444.15 kW

I

.. Power transmitted N

. Example ; 2.13

A 440 mm outer diameter, 250 mm inner diameter and 300 mm long steel hub is to be shrink on
to a 250 mm diameter steel shaft, If the torque to be transmitted is 300 kNm and i = 0.18, determine
the amount of interference required. [Bangalore University, Sep'98]

Data :

d =440 mm; d_ =250 mm; d =0 /(.. solid shaft); /= 300 mm; M, =300 kNm = 300 x10* Nmm ;
p=0.18

Solution :
(i) Contact pressure

ndZiup,

Torque of shrink fitM, = >
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71X 250% X300 0.18X p,

ie., 300 x 10¢ =
2
- Contact pressure p, = 56.6 N/mm?®
(ii) Total interference
d (di+d d
Change in diameter of inner member Ad, = —ELE—'” ['&z—_? “Vi= "p—iE‘L[l -v] (- d; =0)
[ 3
.. 11.2 (DDHB)
From Table 2.10 (New DDHB) for steel
Modulus of elasticity E = 206 GPa = 206 x 10° N/mm?
Poisson's ratiov = (1,292
56.6x 250
o Ad = "W [1-0.292] = 0.0486 mm
p.d, |da+d;
Change in diameter of outer member Ad_= ‘?" FEEPT] tv ... 11.3 (DDHB)
o [

56.6 250 [4402 +2502

+0292 | _
206x10° | 440 - 2507 } 0.1542 mm

- Total interference 8 = Ad, + Ad_ = 0.0486 + 0.1542 = 0.2028 mm

Example : 2.14

A cast iron hub of 50 mm outside diameter and 25 mm inside diameter is to be assembled on a 25
mm steel shaft with medium drive fit normal. Determine,

(i) Maximum and minimum interference
(i) Maximum and minimum Contact pressure

(iii) Maximum and minimum tangential stress at contact surface

(iv) Maximum axial force required for the assembly if the hub length is 100 mm and w=012

{v) Maximum torque, [Bangalore University, Aug, 2002]
Data :

d, =50mm; d =25mm; d,=0(" Solid shaft) ;/ = 100 mm ; i = 0.12 ; Medium drive fit normal
Solution :

(i) Maximum and minimum interference
Form Table 11.6 (DDHB) for Medium drive fit normal, Combination of shaft and Hole is H,r,
Form Table 11,12 (DDHB) for 16 fit



. Maximum Contact pressure Pc__ = 73.81 N/mm?
For minimum Contact pressure

P ]

>

min Es dsn:in -d Eh
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Tolerance for 25 mm diameter shaft is 3!';
ie., Upper deviation = + 4! Microns
Lower deviation = + 28 Microns
- Shaft size is 25155
ie., Maximum size of shaft dsm,. = 25+ 0.041 =25.041 mm
Minimum size of shaftd, = 25 + 0.028 = 25.028 mm
From 11.13 (DDHB) for H1 fit,
Tolerance for 25 mm diameter hole is *f)'
~. Hole size is 25 K
ie., Maximum size of hole d, = 25 + 0.021 =25.021 mm
Minimum size of hole 4y . = 25+0=25mm
- Maximum interference 8 = 25.041 - 25 =0.041 mm
Minimum interferenced , = 25.028 - 25.021 = 0.007 mm
(if) Maximum and minimum Contact pressure
From Table 2.10 (New DDHB),
For steel, Modulus of elasticity E = 206 GPa ; Poisson's ratio v = 0.292
For cast iron, Modulus of elasticity E = 100 GPa ; Poisson's ratio v = 0.211
For maximum Contact pressure,
Penmax Xd\'max dsnznax +di2 Pemax thmin d‘z' +dh"2’i“
5 = : - =0, |+ | ¥ _q.2 Ty ... 11.5 a (DDHB)
- Eg dsmax —-dy A E, ¢ hmin
o X25.041 2 x25 [ 507 +25°
e, 0.04] & bomx 2 25'0‘“2 0 a0y |4 Remn T2 |25 T2 w021y
. 206x10 25.041° -0 100x 10 50° =25

2 2
do _dhmnx

2 2 . d2+ 2
5 = cmin dsrnin [dsmin +d; 'Us] + pcmdehmax l: 1] dhmax +Uh
i
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P, in X25.028 | 25.028% 40 Pomin X25.021 [ 507 +25.0212
ie., 0.007 = { - 0-292} +— [

5 +0211
206x10° | 25.028° -0 100x10° | 50° -25.021° J

. Minimum contact pressure Pemin = 12.529 N/mm?
(iii) Maximum and Minimum tangential stress at contact surface
d? +d? J

Maximum tangential stress Op__ = P s [a‘z_—dz ... 11.13 (DDHB)

50° + 257 ;
73.81 | 50T _ 557 | = 123.02 N/mm

d? +d? 507 +252
Minimum tangential stress g = P in [ 2 EJ =12.529 [_"_z:l = 123.02 N/mm*
B O = Pemin { g2 _ 42 507 - 25

{iv) Maximum axial force

Fima = mdfup, =nx25x100x0.12x7381 .. 11.22(DDHB)
= 69564.286 Nmm
(v) Maximum torque
nd? T d.
s > == =F, = ... 11.25 (DDHB)

25
69564.286 x 5= 869.554 x 10 Nmm

869.554 Nm

.« Example : 2.15

A high pressure cylinder consists of 2 steel tube with inner and outer diameters of 120 mm and
166 mm respectively. It is jacketed by an euter tube with an outer diameter of 200 mm. The tubes are
assembled by a shrinking process in such a way that maximum principal stress induced is
36.45 N/mm’. The shrink fit assembly is further subjected to an internal fluid pressure of 60 N/mm?.
Determine,

(i) Shrinkage pressure
(ii) Resultant tangential and radial stresses and plot the stress distribution.
Data :
d, = 120 mm; d, =160 mm; d =200 mm ; o, = 36.45 N/mm’*; p, = 60 N/mm*
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Solution :

(i) Shrinkage pressure

d2 +d;

Tangential stress at the inner surface of outer member (jacket) 5, = Pc[ FE dé J 11.13 (DDHB)
[+]

¢

. 2007 +160°
ie., 3645 = p, | 5007 _1e0?
. Contact pressure or Shrinkage pressure p_ = 8 N/mm’

(ii) Stresses due to internal fluid pressure (ie., p, = 60 N/mm?)

If the compound cylinder is subjected to an intemal fluid pressure p, and external pressure p,_ =0, then
the general expression for tangential stress according to Lame's equation is,

Pidi2 + dﬁ
G, = df — 42 4r2 .. .19 (DDHB)
[4] ] q ! +ﬁ =3 ¥ [T =—
” dg ~df d; dy —dj 2

2% 60%1202
T 2007 —120°

Tangential stress at the outer surface of outer cylinder (ie., jacket) due to internal fluid pressure p,

<
]

= 67.5 N/mm? (Tensile)

Tangential stress at the inner surface of outer cylinder (ie., jacket) or Outer surface of inner member

(ie., tube)
2 2
' ' pidi { do ] ( dCJ
= oI+ = = =2
o] = Oy = 2
0, % = g2 —g? i 2

601207 : 200° 2 -
= 20071207 *go? | =86.5 N/mm? (Tensile)

Tangential stress due to internal fluid pressure p, at the inner surface of inner member

. d? d? d.
s = ! ]q 1+—2 (‘.‘r=—')
e B

60%120° 2007
= 200 -1207 [1 + 1202 ) = 127.5 N/mm?’ (Tensile)

Tangential stress distribution due to internal fluid pressure is shown in Fig. 2.13 (a)
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(b) Radial stress distribution due to internal fluid pressure
If the compound cylinder is subjected to an internal fuid pressure p, and external pressure p_= 0, then
the general expression for radial stress according to Lame’s equation is

d? d*
o = Bp—d {1—:1—;’2—J ... 7.20 (DDHB)

i
Radial stress at the outer surface of outer cylinder (ie., jacket) due to intemal fluid pressure P,
: pid; d2 [ dy J
Ur = T N 1 Tt = O Sr=—
v {dl-df) [ d; 2

Radial stress at the inner surface of outer cylinder (ie., jacket) or Outer surface of inner member (ie.,
tube) due to internal fluid pressure p,

o, =0, _ i I--ﬁ (r:d—‘J
W TR T dg-dP L A 2

60x120* [ 200
(200 - 1202) 1607

] =-33.75 N/mm? (Compressive)

Radial stress at the inner surface of inner member due to internal fluid pressure P,

' pid; V(. _di
Grii = dg_dz [l_d_z] (- r= 2

1

—p, = - 60 N/mm?’ (Compressive)

Radial stress distribution due to internal fluid pressure is shown in Fig. 2.14 (a)
(iii) Stresses due to shrink fit

(a) Tangential stress distribution due to shrink fit

Tangential stress at outside diameter of outer member (je., jacket)

2p.d?  2x8x160°
=2l = 28.44 N/mm? (Tensile) .. 1112 (DDHB)

o T d2-aZ T 20071607

Tangential stress at the inside diameter of outer member (ie., jacket)

dﬁﬂﬁ} 2002 +160°
Tog = Pe| 55 | =8| o 100 1 _ 36 44 N/mm? (Tensile ... 11.13 (DDHB
b-oi (dn—di (200“—160‘) (fensile) (OB

Tangential stress at outside diameter of inner cylinder (ie., tube)

d2+d-2J [1602+1202

Gg_ip = —pc{L——fz = m) = ~28.57 N/mm? (Cotnpressive) .. 11.14 (DDHB)
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Tangential stress at inside diameter of inner cylinder (ie., tube)

_2pdi  2x8x160°
di-d? ~ 160° —120°

Cgoii = =-36.57 N/mm? (Compressive) ... 11.15 (DDHB)

Tangential stress distribution due to shrinkage fitting is shown in Fig. 2.13 (b)
(b) Radial stress distribution due to shrink fit ;

Radial stress at outside diameter of outer member (ie., jacket) Oy—o0 =0 ... 11.16 (DDHB)

Radial stress at inside diameter of outer member (ie., jacket) €i-i =-p, =8 N/mm? (Compressive)
... 11,17 (DDHB)

Radial stress at outside diameter of inner member (ie., tube) ©,_;, = —p_ = -8 N/mm? (Compressive)
... |1.18 (DDHB)

Radial stress at inside diameter of inner member (ie., tube) 0,_;; =0 ... 11.19 (DDHB)

Radiat stress distribution due to internal shrinkage fitting is shown in Fig. 2.14 (b).
(iv) Resultant stress distribution
(a) Resultant tangential stress distribution due to internal fluid pressure and shrink fit
Resultant tangential stress at outside diameter of outer member (ie., jacket)

= Ggoo + Og_ua = 67.5 + 28.44 = 95.94 N/mm?* (Tensile)
Resultant tangential stress at inside diameter of outer member (ie., jacket)

= gy + Og.o; = 86.5 + 36.44 = 122.94 N/mm? (Tensile)
Resultant tangential stress at outside diameter of inner member (ie tube)

= Ogip + Og_io = 86.5 — 28.57 = 57.93 N/mm? (Tensile)
Resultant tangential stress at inside diameter of inner member (ie., tube)

= Gyj + Op_ii = 127.5 - 36.57 = 90.93 N/mm? (Tensile)

Resultant tangential stress distribution due to internal fluid pressure and shrinkage fitting is shown in
Fig. 2.13 {c).
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a} Tangential stress b) Tangential stress c) Resuitant tangential stress
distribution due to distribution due to due to internal fluid pressure
internal fluid shrinkage fitting distribution and shrinkage
pressure Fig. 2.13 fitting

(b) Resultant radial stress distribution due to internal fluid pressure and shrink fit
Resultant radial siress at outside diameter of outer member (ie., jacket )

= 0‘['00 +Gf—ﬂn =0+0=0
Resultant radial stress at inside diameter of outer member (ie., jacket)
= o, + O,y =—37.75-8 =~ 41.75 N/mm? (Compressive)

Resultant radial stress at outside diameter of inner member (ie., tube)

= g, +6,_;, =—33.75 - 8 =-41.75 N/mm? (Compressive)
Resuitant radial stress at inside diameter of inner member (ie., tube)

= g, + 0,_; =60 + 0 = - 60 N/mm? (Compressive)

Resultant radial stress distribution due to internal fluid pressure and shrinkage fitting is shown
in Fig.2.14 (¢).
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al Radial stress distribution by Radial stress distribution c) Resultant radial stress
due to internal fluid pressure due to shrinkage fitting  distribution due to internal fluid
pressure and shrinkage fitting

Fig. 2.14

« Example : 2.16

A steel tube with inner and outer diameters of 50 mm and 75 mm respectively is jacketed by an
outer steel tube with an outer diameter of 100 mm. The compound tube is subjected to an internal
pressure of 35 MPa. The shrinkage allowance is such that the maximum tangential stress in each tube
has same magnitude. Find,

(i) Shrinkage pressure
(ii) Original dimensions of tubes
Alse plot the distribution of tangential stresses.
Data :

d,=50mm ;d =75mm;d =100 mm;p,=35MPa
Solution ;

Tangential stress distribution due te internal fluid pressure p,

General expression for tangential stress according to Lame's equation is,

2 2
pid}' do
g, = W |+Z—l:§— when pﬂ:() .... .19 (DDHB)

Tangential stress at the outer surface of outer cylinder (ie., jacket) due to internal fluid pressure pi

o = Pl ()45 _ 2pd? [._.,,=dn]
b TP | dl) T d-d? 2

0 1
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2x35%50° , .
= W =23.33 N/mm’ (Tensile)

Tangential stress at the inner surface of outer cylinder (ie., jacket} or Outer surface of inner member
(ie., tube) due 1o internal ftuid pressure '

. ' p|d3 dg . dc
Ggm O'Bm = E-;,:—:—-E- (I‘F?—} ( r=?)

35 % 50° 100° o
= ———— |1+ — 5 | =32.41 N/mm® (Tensile)
100° - 50~

75%

Tangential stress at the inner surface inner member {ie., tube) due to internal fluid pressure

2 2
. pid; H_du ( di)
) S =—
o = al-d ( di 2

35x50° [, 1007 e
1007 —50% t—-7 | = 58.33 N/mm? (Tensile)

]

50
Tangential stress distribution due to shrinkage fitting

Tangential stress at outside diameter of outer member (ie., jacket)

o . 2pdi _ 2p.x75°
O-00 — 2 i 2 2
d:—dl 100°-75

=2.57 p_(Tensile) . 1112 (DDHB)

Tangential stress at inside diameter of outer member (ie., jacket}

[dﬁmﬁ) (1002 +75°
Gﬁ—ni = <

dX—¢r )7 p"\ 100° - 75

) =3.57 p, (Tensile)
- 11.13 (DDHB)
Tangential stress at outside diameter of inner member (ie., tube)
2 2 '
d2+d?) [ 757+50 _
Co-in = _pc('&'j‘":a'_;-__' =~P; 75750 | =~ 2.6 p, (Compressive)

¢ i

o 11,15 (DDHB)

Tangential stress at inside diameter of inner member (ie., tube)

de _2p.x75 3.6p,(C ive).... 11.15 (DDHB
d'i _diz “(75: _502)—— 0 p (Lompressive).... 11, }

..2p

C

Ogi =
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(i) Shrinkage pressure
As the maximum tangential stress in each tube has same magnitude, equating stresses at the inner
surfaces of tube and jacket,

1€., Gnii + U()—ii = UG- + Uﬂ..(,i

{t

te., 58.33 - 3.6 p,

. Shrinkage pressure or Contact pressure p, = 3.615 N/mm?

32.41+3.57 p,

(if} Original dimensions of tubes
From Table 2.10 (New DDHB) Vol.l for steel
E=206 GPa = 206 x 10° N/mm?; v =0.292

2,42
. . . pcdc dc t d' —
Change in diameter of inner member Ad, = — E ldi-d? v ... 11.2 (DDHB)
< I

3615%75 | 752 +50°
- - [ “0-292}=—3.038x 10~ mm

206%10° | 75° -50°
2 g2
. p.d. d, +d;
Change in diameter of outer member Ad_ = B 12 -g2 tu .. 11.3 {DDHB)
[+] C

3.615%75 {1002 +752

= 206100 | 1002 — 752 +0'292} =5.085x 10°* mm

- Original outside diameter of inner member (ic., tube) ds = dc + Adi =75 +3.038 x 107 = 75.003038 mm
Original inside diameter of outer member (ie., jacket) d, =d_—~Ad = 75 -35.085 x 10~ = 74.994915 mm
Total interference 8 = Ad + Ad =3.038 x 107 + 5.085 x 10~ = 8.123 x 10~ mm

ie., If we keep outside diameter of inner member exactly as 75 mm, then inside diameter of outer
member (ie., jacket) =75 —8.123 x 10 =74.9919 mm

(iii) Resultant tangential stress distribution and the sketch

Tangential stress due to shrink fit at outside diameter of outer member (ie., jacket)

Oo-o0 = 2.57 p,=2.57 x 3.615 = 9.29 N/mm’ (Tensile)

Tangential stress due to shrink fit at inside diameter of outer member (ie., jacket)

Oo-ai = 3.57 p,=3.57 x 3.615 = 12.91 N/mm? (Tensile)

Tangential stress due to shrink fit at out side diameter of inner member (ie., tube)

Go-ic = —2.6p, =~2.6x 3.615=-9.4 N/mm* (Compressive)
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Tangential stress due to shrink fit at inside diameter of inner member (ie., tube)
Cp-ii = -~3.6p,=-3.6x3.615=-13.01 N/mm?’ (Compressive)
Resuhant tangential stress due to internal fluid pressure and shrink fit at outside diameter of outer

member (ie., jacket) = clgm + 64 .= 23.33 +9.29 = 32.62 N/mm?* (Tensile)

Resultant tangential stress due to internal fluid pressure and stress fit at inside diameter of outer member

(ie.. jacket) = 05+ g, . = 32.41 + 12.91 = 4532 N/mm? (Tensile)

Resultant tangential stress due to internal fluid pressure and shrink fit at outside diameter of inner
member (ie., tube) = Gy + G = 32.41 - 9.4 = 23.01 N/fmm? (Tensile)

Resultant tangential stress due to internal fluid pressure and shrink fit at inside diameter of inner member
(ie., tube) =, + g  =58.33— 13.01 = 45.32 N/mm? (Tensile)

Tangential stress distribution due to internal fluid pressure is shown in Fig. 2.15 (a)
Tangential stress distribution due to shrinkage fitting is shown in Fig. 2.15 (b)

Resultant tangential stress distribution due to internal fluid pressure and shrinkage fitting is shown in
Fig. 2.15 (¢) -

5.32 N/mm/’

45.32 N/mm’
32.62N/mm*

23.01N/mm’

{a) {b) (c)
Fig. 2.15

2.12 CYLINDER HEADS AND COVER PLATES

The heads of cylindrical pressure vessels and the sides of square or rectangultar tanks usually
consists of flat plates or slightly dished plates. These plates can either be cast integrally with the
cylinder walls or fixed to them by means of rivets, welds or bolts. Depending upon the type of
connection between the head and the cylindrical wall, it is classified as
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(i) Freely supported and
(ii) Rigidly fixed.
Depending upon the nature of load, it is classified as
(1) Uniformly distributed load and
(ii) Concentrated load.
The design of flat plates forming the heads depend upon the following two factors
(i) Type of connection with the supporting members
(it) Nature of load

2.12.1 Circular flat plate with vniformly distributed load

The thickness of a plate with diameter 'd’ supported freely at the circumference and subjected
to a pressure 'p' distributed uniformly over the total area

/p
h=kdyg e 8.1 (DDHB)
d

where 6, = Allowable or Permissible design stress
= Diameter of plate
p = Pressure
k, = Coefficient. It depends upon the material of the plate and

the method of holding the edges Table 8.3 (DDHB)

p
----- 8.2 (DDHB
Coefficient k, can be obtained from Table 8.3 (DDHB)
Also the values of h and y__can be obtained from Table 8.2 (DDHB)

From Table 8.2 (DDHB) Maximum allowable stress

_ JF(3m+1)
0‘rn:ux - Ud - gnmhz

Maximum deflection y = k, d*

2

where F = Total load mr’p; 1/m = Poission's ratio ; h = Thickness of plate

The thickness of a plate with diameter d edges rigidly fixed and subjected to a pressure 'p’
distributed uniformly over the total area

’ 3F
h = s, T Table 8.2 (DDHB)
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2.12.2 Circular Plates loaded Centrally
The thickness of a flat cast iron circular plate with diameter d and subjected to a load F

. . n
distributed uniformly over an area Zdﬁ

067d,\ F
h = 1.2\}(]— 1 = )? for freely supported plate  ----- 8.3(DDHB)
d

/ F d
0.65 o—loge[a—-J for fixed plate ~ -eeee 8.5 (DDHB)
b [\

Also the values of y and h can be obtained from Table 8.2 (DDHB)

f=a
1

2.12.3 Rectangular flat plates
Thickness of a rectangular plate according to Grashof and Back

ho=abk, —&2— 8.7 (DDHB)
od(a” +b‘)

where a = Length of plate
b = Width of plate
k, = Coefficient, from Table 8.3 (DDHB)

3
Thickness of rectangular plates can also be obtained using the formulae from Table 8.2 (DDHB)

The other formulae commonly used are

h = ab #, For freely supported edges
206, (.1 + b“)
ab —E——-;— For fixed plates

30'd(a“ + b‘)

Thickness of a rectangular plate on which a concentrated load F acts at the intersection

diagonals
abF
h=k |—7—7135 8.8 (DDHB)
g, (a“ +b )

where k, = Coefficient, from Table 8.3 (DDHB)
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2.12.4 Elliptical cover plate

Thickness of uniformly loaded elliptical cover piate

p
= abk. |———m——
h = abks cd(u3+b2)

where a
b
k

hl

2.12.5 Dished Heads
Many cylinders are provided with
semispherical heads as shown in Fig 2.16. The
thickness of a dished head that is riveted or welded
to cylindrical shell according to ASME Boiler code
_ 833pR

h= 5 T 8.39 (DDHB)

u

Major axis

Minor axis

Coefficient. from Table 8.3 (DDHB)

————— 8.9 (DDHB)

where R = Inside radius of curvature of head

c

d

R shouid be greater than shelt diameter. If R <

i

Ultimate strength of the material 7
Shell diameter

0.8 d, then take R = 0.8 d. If there is an opening in
the head, the thickness of the head should be
increased by 15% but should not be less than

3.2 mm

2.12.6 Standard Semi-ellipsoidal head

When the dished plate is fixed integrally or welded to the cylinder and is of standard semi
ellipsoidal shape as shown in Fig 2,17, then

Thickness of head h =

where O,

n
d

P;
CA

i

1

oA

26,n~-90.2p,

Allowable tensile stress (Tangential or Hoopstress)
Efficiency

Shell diameter

Allowable maximum pressure

Corrosion allowance

i
d
-]

|
Fig 2.17

d/4
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2.12.7 Hemispherical head

When the dished plate is fixed integrally or welded to the cylinder and is of hemispherical
shape as shown in Fig 2.18, then

. . p.d;
) : =—7t 4 CA
Thickness of head h 40,1—04p,
where CA = corrosion allowance '
7/ DA/
2.12.8 Conical head F;‘gI 2.18

When the dished plate is fixed integrally or welded to the cylinder and is of conical shape as
shown in Fig 2.19, then

p.d;

i adh= ——— _4+CA
Thickness of head h (20'07! _ l.2pi)
!/r\
PR
7/ N\
S0 0N
/ [l \
/! | AY
/ \
7 ' Ay
’ | \
7 . \
/ T, ?
?
Y LR/

// | /
| //

% ' 2
| 7

7 g %
« ,4

Fig 2.19
2.12.9 Unstayed flat heads

Fig 2.20 shows the construction of various types unstayed steel heads, coverplates, blind
flanges etc. The minimum thickness of unstayed steel flat head or cover plate with uniformly
distributed load is given by

h=d/— 8.40 (DDHB)
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where d = Shell diameter
¢, = Coefficient, from Table 8.1 (DDHB)
p = Allowable or Maximum pressure
o, = Allowable design stress, from Table 8.9 (DDHB)

According to Grashof's formula for stayed flat plates with uniformly distributed load,

2
Maximum stress o= 0.22735 _E;l_zp ----- 8.42 (DDHB)

2.12.10 Torispherical head

When the dished plate is fixed integrally or welded to the cylinder and is of Torispherical
shape as shown in Fig 2.21, then

0.855p,L
oyn—0.lp;
r, is taken as 6% of crown radius. The crown radius L should not be greater than the outside

diameter (d ) of the cylindrical shell. Length of straight portion / = 3 h or 20 mm (which ever is
more)

Thickness of head h = +CA where L is the inside crown radius. The knuckle radius
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Example : 2.17

A cast iron thick cylinder of internal diameter 150 ram is subjected to an internal pressure of 12
N/mm?. The allowable working stress for the cast iron may be taken as 20 N/mm? Determine

{i) Thickness of ¢ylinder wall
(ii) Thickness of the circular flat cylinder head cast integral with the cylinder walls.

Data :
p=12N/mm? o©,=20N/mm?* d= 150 mm
Solution :
(i) Thickness of cylinder wall

According to Lame's equation thickness of Cl thick cylinder wall

podif [Gotpi 1 150 }20“2—1 =75 7.24 (DDHB
=5 V5, -p, = V30-T5 =75mm - 24( )

(ify Thickness of flat circular cylinder head

h = kd GL ----- 8.1 (DDHB)
d

From Table 8.3 (DDHB) for cast iron fixed edges (- Cast integral with cylinder walls)
Coefficientk, = 0.44 ;

,12
.. Thickness of head h =0.44 x 150 56 =5L12mm

From Table 8.2 (DDHB) for flat circular head with distributed load and edge fixed

il

3F
Maximum allowable stress G, A where F = nrozp

IxAx 75 %12
4mh?

50.31 mm

ie,20

~ Thickness of head h
Adopt the bigger value i.e., h = 51.12 mm, Take, Thickness of head h = 55 mm

. Example : 2.18

A eylinder is provided with a head of flat circular steel plate of 500 mm diameter and is supported
around the edge. It is subjected to a uniform pressure of 5 N/mm?. The allowable working stress for the
material is 70 N/mm?’ and Poisson’s ratio is 0.3. Determine the

(i) Thickness of thick cylinder wall
{ii) Thickness of the circular flat cylinder head.
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Data:
1
d =500 mm; p=5N/mm’ o,="70N/mm? e 0.3

Solution :
(i) Thickness of cylinder wall

According to Lame's equation thickness of thick steel cylinder wall
d; O 000/ 70 1
h = 7[ 0‘3—2p_1] =" 1(.,0_2)(5 =20mm = e 7.25 (DDHB)

(ii) Thickness of flat circular cylinder head

h = kd |2 —--8.1 (DDHB)
T4

From Table 8.3 (DDHB) for steel supported at edges coefTicient k = 0.42

5
Sh o= 042 x 500 —7_6 =56.12 mm

From Table 8.2 (DDHB) for flat circular head with distributed load and supported edges (i.e., free)

3F(3m+1)

P— where F = moz p

Maximum allowable stress ¢ f

3xnx2502x5[3xl+1]
03

ie, 70 = T
Exax—xh
03

2

sh
Adopt the bigger value, i.e, h = 74.32 mm

74.32 mm

Take, thickness of head h= 75 mm

wfkample :2.19

A fusion welded thin cylindrical shell of internal diameter 200 mm is filled with ammonia gas,
under pressure 5 N/mm? The ends of the cylindrical shell are closed by dished head with the inside
covex. The radius of curvature of the head is 200mm. The material of the cylindrical shell and head is
Fe 360 steel and factor of safety 5. Determine,

(i) Thickness of cylindrical shell and
(ii} Thickness of head
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Data :
d=200mm; p=5N/mm?’ R =20 mm; Material - Fe 360 steel; FOS = 5;
Solution :

From Table 1.9 (New DDHB) for Fe 360 steel 0, =360 N/mm?

S0, =0 = —= = — =72 N/mm’
(i) Thickness of cylindrical shell

Maximum thickness of shell exclusive of corrosion allowance

L 8.10 (DDHB)
2ogn-p '
From Table 8.4 (DDHB), for double welded butt joint
Joint efficiency factor i = 0.85
h = 54)53@—— 8.52
= Ix72x085-5 oM™
Considering corrosion allowance, take the thickness of cylindrical shell h= 10 mm.
(i) Thickness of dished head
. . o . 8.33pR
Thickness of a dished head that is riveted or welded to cylindrical shell h = e T 8.39 (DDHB)

u

_ 8.33><5x200_“57 12 mm
= Taxaen  oofmm=lem

Example : 2.20

A fusion welded thin cylindrical shell of internal diameter 2000 mm is subjected to an internal
pressure of 1 N/mm?. The yield strength of the material of the shel} is 250 N/mm? with a factor of safety
of 2.5. The ends of the eylindrical shell are closed by torispherical heads with a crown radius of 1.6 m
and the corrosion allowance is 3 mm. Determine,

(i) Thickness of cylindrical shell and

(ii) Thickness of head

Data :
d =2000 mm; p=1Nmm?* Oy =250 N/mm* FOS=25L=16ms= 1600 mm; CA =3 mm
Solution : '

(i) Thickness of cylindrical shell

Maximum thickness of cylindrical shell inclusive of corrosion allowance

pd; .
h = ————+CA where CA = corrosion allowance - 8.10 (DDHB)
2o0gn-p
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From Table 8.4 (DDHB), for double welded butt joint
Joint efficiency factor n =0.85

ay 250
Permissible or Allowable design stress 6, =, = F_(})lS— =55 = 100 N/mm?
1x2000
= ——————————+3= 1476 =15
2x100x085-1 - = (476 mm= 15 mm

.. Thickness of cylindrical shell = 15 mm
(ii) Thickness of head

Thickness of torishperical head

_ 0.885p,L +CA _ 0.885x 1 x 1600
= oan-0.lp, T 100%x0.85-0.1x1

+3 =19.68= 20 mm

.". Thickness of torispherical head h = 20 mm

- Example ; 2.21

An engine’s chest is covered by a flat rectangular head of 200 mm x 300 mm dimension. The plate
is made of grey cast iron FG 150 material, supported at the edges and is subjected to a uniform pressure
of 1.5 N/mm?’. Determine the thickness of the head for a factor of safety of 5.

Data :
a=300 mm; b =200 mm; p=1.5N/mm? FOS =5 ; Material for the head - Grey cast iron FG 150

Solution :
From Table 1.4 (New DDHB) for grey cast iron FG 150
o, = 150 Nfmm?

Thickness of a rectangular plate subjected to uniform load according to Grashof's and Back

h=abky f—2—ro 8.7 (DDHB)
od(a' +b )
wherea = Length of plate = 300 mm
b = Breadth of plate = 200 mm

From Table 8.3 (DDHB) for cast iron supported, Coefficient k,=0.75

- h = 300 %200 x 0.75 ) =27.9=25mm

5
30(3002 +200°

From Table 8.2 (DDHB) for rectangular plate, all edges supported
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0.75b%p

Maximum allowable stress 0,= ————————~
h3(1+l.6lx b,]

2t

0.75% 200% x 1.5
3
b2 14161 200
300°

31.86 =32 mm

ie., 30 =

=2
]

Adopt the larger value,

~. Thickness of rectangular plate head h = 32 mm.

Example : 2.22

The following data refers a diesel engine,

Inside cylinder diameter = 150 mm

Explosion pressure = 5 N/mm?

Material for the cylinder and head = Grey CI FG 150
Factor of safety = §

Design (i) cylinder and (ii) Head.

Solution :
(i) Design of cylinder

From Table 1.4 (New DDHB) for grey cast iron FG 150, 6, = 150 N/mm?.

- Allowable stress 6 =G, == =" = 30 N/mm”.

As material for cylinder is CI which is brittle material, using Lame's equation

. di} [GotPi ]
Thickness of cylinder wallh = ~— oo —p; = 7.24 (DDHB)
o= Pi ]

150[ [30+5
2 |V30-5

—H =374 mmz= 15 mm

Allowing for blow holes and reboring, take thickness of cylinder wall h= 13 + 5=20mm.
(i) Design of head

Consider the cover as circular plate supported at the circumference subjected to uniformly distributed
load

- Thickness of headh = k,d k?- ----- 8.1 (DDHB)
o
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From Table 8.3 (DDHB) for Cl supported at edges. Coefficient k, =0.54

f 5
~oho= 054 % 150 % = 33.068 mm

From Table 8.2 (DDHB) for circular plate distributed load over the entire surface and edge supported

) JF(3m+1) 2
Maximum allowable stress o, = “emmh? where F = mr,; p

From Table 2.10 (New DDHRB) for CI, Poisson's ratic I/m = v =0.211

Ixmx 75 x5(3x-—l——+1J
0211

i.e., 30

Snx—-! —x h?
0211

.. Thickness of head h = 33.6 mm
Adop the bigger value. ie..h = 33.6 mm
Take, Thickness of head h = 35 mm.

Example : 2.23

A hydraulic press shown in Fig 2.22 having a working fluid pressure of 10 N/mm?. The maximum
force exerted by the press is 50 kN. The allowable stress for cast steel = 100 N/mm? (Tensile), for mild
steel = 50 N/mm? (compressive) and for cast iron = 30 N'mm? (tensile), Design,

(i) Ram

(i) Cylinder
(iii) Top plate and
(iv) Sliding platform

Solution :
(i) Design of ram

Maximum force exerted by the ram F= S0 kN = 50 x [{F N
r
4

ie. —dlxp = 50x 10°

It

. n 3
i.e., 7 xd; x 10

30 x 10
- Diameter of ram d = 79.8 mm = 80 mm.
In order to reduce its weight. it can be designed as a thick cylinder subjected to external pressure,

According to Lame's equation, maximum tangential stress subjected to onl y external pressure
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Polp |, da
- [+97 |whenp, =0,r=d/2 - 7.17 (DDHB)
To

P d2 a2
o, = -dz"ﬁ'gz [l_th =-p, - 7.18 (DDHB)

According to maximum shear stress theory for ductile materials, maximum shear stress

%60 " Ot
‘[‘m = 2
d? +d2-)
'P 1] ti _(_p )
_ 4] dfo-df, o
- 2
a2, +d2 - (a2, - ¢2)
ie, 27, = "Po aZ ~d2
__2pd}
T di-d

The material for the ram is mild steel. The allowable compressive stress for mild steel is given as
56 N/mm?, As the maximum shear stress is one half the maximum allowable stress

2 x l o = 2pod3i
274 T di-d}
2x10xd? .
ie., 50= 802——dz [-» Allowable stress for the ram material i.e., mild steel o, = 50 N/mm? (compressive)]
i

ie, 80— d% = 04 d3
.. Inside diameter of ram d_ = 67.61 mm

Take, Inside diameter of ram dr, = 70 mm.



122 Design of Machine Elements - |i

(ii} Design of cylinder
Letd = Outside diameter of cylinder
d

B;
The material for the cylinder is cast iron, It will be designed as a thick cylinder Assume a clearance of
15 mm between the ram and cylinder bore

Inside diameter of cylinder

Pressure inside the cylinder

- Inner diameter of cylinder d = 80 + 15 =95 mm

According to Lame’s equation, thickness of CI thick cylinder wall

d; | [og+p _1
h = 2 [{ 06 —p; | — 7.24 (DDHB)

95[ [30+10 ]
= 3‘_ 30-10 ‘1_‘ (-~ Maximum allowable stress for cylinder

= 19.67 mm =20 mm material (CI) &, = 30 N/mm?)

i.e., Thickness of cylinder wall h = 20 mm
-+ Outside diameter of cylinderd = d +2h =95+ 2% 20 =135 mm
(iti) Design of top plate

Consider the top plate as a rectangular plate, uniformly loaded and supported at the four corners. Select
the material of the top plate as cast steel.

Thickness of a rectangular plate according to Grashof's and Back

h = abky (———rprnr 8.7 (DDHB
? o4 (32 + bz) ( )
wherea = Length of plate = 250 mm
b = Width of plate = 250 mm
From Table 8.3 (DDHB) for steel supported ends,
Coefficientk, = 0.60

50x10°

Pressure acting on the plate p = 20x107 = 0.8 N/mn?
250 x 250

08
100(250% +250%)

.. Thickness of plate h = 250 x 250 x 0.6 J

948 mm= 10 mm

From Table 8.2 (DDHB) for rectangular plate, all edges supported
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TOP PLATE
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.\\\'\\\),\
Fig 2.22 Hydraulic press
: 0.75b%p , 0.75% 250> x 0.8
Maximum allowable stress o, = —'—“7 vie., 100= Y
h2| 1+ 161X — h?[1+161x
b 250°

. Thickness of plate h = 11.98 mm = 12 mm
Adopt the larger value ; .. Thickness of top plate h = 12 mm
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{iv) Design of sliding platform

The sliding platform is a square plate, loaded uniformly on the whole face and supported at the centre
on a circle of diameter of the ram. To design, this plate can be approximated by considering it as a circular
plate rigidly fixed around the circumference. Consider the material of the sliding piatform as mild steel.

According to Grashof’s formulae for the thickness of a plate with the above given type of loading

fF d
h = 0.65 ——loge(-—-J e 8.5 (DDHB)
O.d do

wherea, = Allowable stress = 50 N/mm?
d = Diameter of plate = 250 mm
d_ = Diameter of support = 80 mm
F = Maximum force exerted by the press = 50 x 10° N
oh = 0.65x JSOXW x-logc(?ig) =21.94 mm =25 mm
50 80

.. Thickness of sliding platform h = 25 mm.

Example : 2.24

A cast steel cylinder of 300 mm internal diameter is to contain liquid at a pressure of 12.5 N/mm?,
Itis closed at both ends by unstayed flat cover plates and are attached by bolts, Determine the thickness
of the cover plates if the allowable working stress for the cover material is 75 N/mm?.

Data :
d =300 mm; p=12.5N/mm?; ©,=75Nmm?
Solution :

Minimum thickness of an unstayed flat head or cover plate according to ASME Boiler code

c;p

h = dj—=— -—-- 8.40 (DDHB)
T4

From Table 8.1 (DDHB) for plates rigidly bolted to the shell flange [Fig 8.1 F (DDHB)}
Coefficientc, = 0.162

o h = 300 %ﬁ'iﬂg.ammsso;nm

.. Thickness of cover plate h = 50 mm Q




